Teoría cuántica de la luz
La necesidad de reconciliar las ecuaciones de Maxwell del campo electromagnético, que describen el carácter ondulatorio electromagnético de la luz, con la naturaleza corpuscular de los fotones, ha hecho que aparezcan varías teorías que están aún lejos de dar un tratamiento unificado satisfactorio. Estas teorías incorporan por un lado, la teoría de la electrodinámica cuántica, desarrollada a partir de los artículos de Dirac, Jordan, Heisenberg y Pauli, y por otro lado la mecánica cuántica de de Broglie, Heisenberg y Schrödinger.
Paul Dirac dio el primer paso con su ecuación de ondas que aportó una síntesis de las teorías ondulatoria y corpuscular, ya que siendo una ecuación de ondas electromagnéticas su solución requería ondas cuantizadas, es decir, partículas. Su ecuación consistía en reescribir las ecuaciones de Maxwell de tal forma que se pareciesen a las ecuaciones hamiltonianas de la mecánica clásica. A continuación, utilizando el mismo formalismo que, a través de la introducción del cuanto de acción hν, transforma las ecuaciones de mecánica clásica en ecuaciones de mecánica ondulatoria, Dirac obtuvo una nueva ecuación del campo electromagnético. Las soluciones a esta ecuación requerían ondas cuantizadas, sujetas al principio de incertidumbre de Heisenberg, cuya superposición representaban el campo electromagnético. Gracias a esta ecuación podemos conocer una descripción de la probabilidad de que ocurra una interacción u observación dada, en una región determinada.
Existen aún muchas dificultades teóricas sin resolverse, sin embargo, la incorporación de nuevas teorías procedentes de la experimentación con partículas elementales, así como de teorías sobre el comportamiento de los núcleos atómicos, nos han permitido obtener una formulación adicional de gran ayuda.
Max Planck, (1858 – 1947) nacido en Kiel, Alemania el 23 de abril de 1858. Es el “padre de la cuántica”. Planck dedujo la hipótesis de la discontinuidad de la energía y en el año de 1900 Planck descubre los cuantos y formula la teoría que lo haría famoso, y que daría nacimiento a un campo desconocido hasta entonces, la Mecánica Cuántica, la cual da una nueva y muy especial forma de ver los fenómenos físicos. Gracias a sus esfuerzos, y muy merecidamente, Planck recibió el premio Nobel de Física en 1918. Max Planck muere el 4 de octubre de 1947.
Planck retomó la teoría defendida hace tiempo por Newton, la cual en ese entonces ya no tenía validez alguna. Newton consideraba a la luz como un haz de corpúsculos que se propagaban en línea recta, al aparecer la teoría ondulatoria de Huygens (1678), la teoría de los corpúsculos de Newton se vio destruida, pero era retomada nuevamente por Planck en 1900.
La teoría cuántica básicamente nos dice que la luz no llega de una manera continua, sino que está compuesta por pequeños paquetes de energía, a los que llamamos cuantos. Estos cuantos de energía se llaman fotones. Toda luz que nos llega viene por pequeños paquetes, no es continua.
Los fotones son las partículas “fundamentales” de la luz, así como los electrones son las partículas fundamentales de la materia, esta analogía es la que sirvió para realizar el descubrimiento del carácter cuántico de la luz. Por esta misma analogía, años después, de Broglie desarrolló la teoría que formula que la materia también tiene un carácter ondulatorio. La carga eléctrica y la energía tienen una estructura granular (está formada por cuantos), al igual que la materia.
La teoría cuántica ha servido para demostrar los fenómenos que no se pudieron explicar con la teoría ondulatoria de la luz, pero hay fenómenos que no pueden ser explicados con la teoría cuántica, y además hay ciertos fenómenos que pueden ser explicados por ambas teorías.
La necesidad de reconciliar las ecuaciones de Maxwell del campo electromagnético, que describen el carácter ondulatorio electromagnético de la luz, con la naturaleza corpuscular de los fotones, ha hecho que aparezcan varías teorías que están aún lejos de dar un tratamiento unificado satisfactorio. Estas teorías incorporan por un lado, la teoría de la electrodinámica cuántica, desarrollada a partir de los artículos de Dirac, Jordan, Heisenberg y Pauli, y por otro lado la mecánica cuántica de de Broglie, Heisenberg y Schrödinger.
Paul Dirac dio el primer paso con su ecuación de ondas que aportó una síntesis de las teorías ondulatoria y corpuscular, ya que siendo una ecuación de ondas electromagnéticas su solución requería ondas cuantizadas, es decir, partículas. Su ecuación consistía en reescribir las ecuaciones de Maxwell de tal forma que se pareciesen a las ecuaciones hamiltonianas de la mecánica clásica. A continuación, utilizando el mismo formalismo que, a través de la introducción del cuanto de acción hν, transforma las ecuaciones de mecánica clásica en ecuaciones de mecánica ondulatoria, Dirac obtuvo una nueva ecuación del campo electromagnético. Las soluciones a esta ecuación requerían ondas cuantizadas, sujetas al principio de incertidumbre de Heisenberg, cuya superposición representaban el campo electromagnético. Gracias a esta ecuación podemos conocer una descripción de la probabilidad de que ocurra una interacción u observación dada, en una región determinada.
Existen aún muchas dificultades teóricas sin resolverse, sin embargo, la incorporación de nuevas teorías procedentes de la experimentación con partículas elementales, así como de teorías sobre el comportamiento de los núcleos atómicos, nos han permitido obtener una formulación adicional de gran ayuda.
Max Planck, (1858 – 1947) nacido en Kiel, Alemania el 23 de abril de 1858. Es el “padre de la cuántica”. Planck dedujo la hipótesis de la discontinuidad de la energía y en el año de 1900 Planck descubre los cuantos y formula la teoría que lo haría famoso, y que daría nacimiento a un campo desconocido hasta entonces, la Mecánica Cuántica, la cual da una nueva y muy especial forma de ver los fenómenos físicos. Gracias a sus esfuerzos, y muy merecidamente, Planck recibió el premio Nobel de Física en 1918. Max Planck muere el 4 de octubre de 1947.
Planck retomó la teoría defendida hace tiempo por Newton, la cual en ese entonces ya no tenía validez alguna. Newton consideraba a la luz como un haz de corpúsculos que se propagaban en línea recta, al aparecer la teoría ondulatoria de Huygens (1678), la teoría de los corpúsculos de Newton se vio destruida, pero era retomada nuevamente por Planck en 1900.
La teoría cuántica básicamente nos dice que la luz no llega de una manera continua, sino que está compuesta por pequeños paquetes de energía, a los que llamamos cuantos. Estos cuantos de energía se llaman fotones. Toda luz que nos llega viene por pequeños paquetes, no es continua.
Los fotones son las partículas “fundamentales” de la luz, así como los electrones son las partículas fundamentales de la materia, esta analogía es la que sirvió para realizar el descubrimiento del carácter cuántico de la luz. Por esta misma analogía, años después, de Broglie desarrolló la teoría que formula que la materia también tiene un carácter ondulatorio. La carga eléctrica y la energía tienen una estructura granular (está formada por cuantos), al igual que la materia.
La teoría cuántica ha servido para demostrar los fenómenos que no se pudieron explicar con la teoría ondulatoria de la luz, pero hay fenómenos que no pueden ser explicados con la teoría cuántica, y además hay ciertos fenómenos que pueden ser explicados por ambas teorías.
1 comentarios:
Gran trabajo, este corto pero muy compuesto informe acerca de la teoría cuántica de la luz.
Publicar un comentario